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ABSTRACT

In this expository paper the concepts of competing and

complementary risks are defined and a survey of recent results

in the area is presented. Identifiability of distributions,

both univariate and multivariate, useful in reliability and

survival analysis is considered.

I

Key Words: Competing risks, Complementary risks, Identifiability,

Reliability, Biometry, Distribution of minimum and

maximum, series and parallel system.
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1. INTRODUCTION

The problem of identifiability (or of nonidentifiability)

arises naturally in a number of physical situations. The problem,

in general terms, can be defined as follows. Let U be an observ-

able random variable with distribution function F0 , and let F0

belong to a family F = [F : col of distribution functions indexed

by a parameter 6. Here 0 could be scalar or vector valued.

We shall say 0 is nonidentifiable by U if there is at least

one pair (0, 6) 6 8', 0, OcQ such that Fe(u) = F0 -(u) for all

u. In the contrary case we shall say 0 is identifiable. It may

happen that 0 itself is nonidentifiable but a function y(0) is

identifiable in the following sense: For any 0, ncQ, F0 (u) = F (u)

for all u implies y(0) = y(n); in this case we may say 0 is partially

identifiable.

Puri (1979) has surveyed some examples arising in the general

literature. The purpose of the present paper is to present a survey

of results available in the area of competing risks and complimen-

tary risks. We would primarily consider the cases where we have an

underlying parametric model. In Sections 2 and 3 we define the pro-

blems of competing and complementary risks and discuss the case when

w .9,T-
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the underlying random variables are independently distributed. The

case of dependent random variables is considered in Section 4. The

problem of estimation is briefly discussed in Section 5. Finally,

in Section 6, some open problems and other related areas of research

are pointed out.

I

..
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2. INDEPENDENT RANDOM VARIABLES WITH IDENTIFIED EXTREMUM

The problem of competing risks, in its simplest form, may

be described as follows: Let X. be a random variable with distri-1

bution function Fi(x), (i = 1,2 ,...,p). We assume that Xi's

are not observable, but U = min(XI , . ..,X P ) is. We would like to

estimate F. 's given the observations on U.1

This model finds interesting applications in a number of

fields but particularly in problems of survival analysis and

reliability theory. Thus in problems of competing

risks, or in studying reliability of complex systems, an individual

or a system of components may be exposed to p different causes of

death (failure) where X. is the time to death from cause1

C. (i = 1,2 ,...,p). Although one would like to know about the1

distribution of the X.'s only observations on U's will be avail-1

able. Basu and Ghosh (1980) give some of these examples. For

other examples and a survey of the area see Birnbaum (1979) and

David and Moeschberger (1978). An interesting ecological applica-

tion is given by Anderson and Burnham (1976) who study the popula-

tion ecology of the mallard where the two causes of death are

"hunting" and "natural mortality."

In case the X.'s are independent and identically distributed,

the problem is a trivial one since

p

Fux) = n Fi(x) = (Fx(x))P (1)
i=l

where F = 1 - F is the survival function (reliability function),

Fu(x) is the cdf of U, and Fx(x) is the common distribution function

of the X.'s.
" !
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In the general case, when the X.'s are not identically dis-

tributed, the problem of identifiability can be illustrated using

the following exaudgle.

Example 1.

Let Xi (i = 1,2,3,4). be independent random variables and let

Xi  e(Xi). That is let the cdf of X. be

F(x) e x > 0, X > 0.

i

If X + X2  X 3 + X44 then

min(Xl,X 2 ) and min(X 3,X4 )

are identically distributed.

It is possible to introduce additional random variables so

that the enhanced family with the added information becomes identi-

fiable. In this case we call the original family of distributions

"rectifiable." Let I be an integer valued random variable

(I = 1,2 ..... p). (U,I) is called an identified minimum if I = k

* when U = min(Xl,X2 ,...,X p ) = Xk . In the absence of I, U will be

called a non-identified minimum.

Basu and Ghosh (1980) introduce a dual problem, called the

problem of complementary risks, where instead of observing the

minimum (identified or non-identified) one observes the maximum

V = max(X1 ,X2 ,...,X ). Basu and Ghosh (1980) introduce examples

to show that this problem also occurs naturally in survival analysis

and reliability theory. If the X's are iid then, as in the case1

of minimum, one can trivially obtain the cdf Fx (X) of X from that

of V.

_
.
" 4 . ." ' .. *.. '
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We now consider the case when the X. 's are independently but

not identically distributed. The joint probability distribution

of (U,I) is specified by monotonic functions

H k(x) = P(U x, I = k), (k = ,2 ,...,p). (2)

Then Berman (1963) has obtained the following theorem.

Theorem 1. The set of functions {H k W1 is related to the set

(F.i(x)} by the functional equations

H ~ kxR(1-F ()dF k(t), k = 1,2 ,...,p. (3)

The solution of this set of equations is

xx

Let Pk= PCI = k) and GkOx) f gk(tMdt be the distribution

function of the conditional random variable X k =UJI k. Hence

Hk Ox) = Pk Gk(x)'

* N~das (1970) has given an alternate expression for Theorem 1 as

p
rk (x) = Pkgk (x)/E p.C(1 - G.i(X)) (5)

and F k(x) =1 -exp{- I r 1 (t)dt}. (6)

a.0:
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That is Fk (x) are uniquely determined by the distribution of theIcf (x)

observable pair (U,I). Where rk (x) = is variously called
Fk(X)

as force of decrement (or of mortality), age specific death rate,

failure rate function, intensity function, and hazard function.

Since the minimum U and the maximum V are related through

the relation

Max(X,X 2,..,X)= - Min(- X1 - X2F Xp

it follows that similar results also hold for the maximum.

The next natural questions are: (a) What if the minimum

(maximum) is not identified? Could we obtain the distribution of

Xk from that of U? And (b) What can we say about the identifi-

ability of the Fk's if the X k's are not independently distributed?

We will discuss these next.

.

0.4
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3. INDEPENDENT RANDOM VARIABLES WITH NONIDENTIFIED EXTREMUM

In case the extremum U is not identified, one can still

uniquely determine Fk (x) under certain conditions. To this end

Basu and Ghosh (1980) obtain the following theorem.

Theorem 2. Let F be a family of pdf on R1 with support (a,b)

which are continuous and are positive to the left of some point A

and such that if f and g are any two distinct members of F then

lim{f (x)/g (x) }
x-a

exists and equals either 0 or . Let Xl,...,Xp be independent

random variables with respective pdf's flf 2 ... ,fp in F and

YIY2,...,Yq be independent random variables with respective pdf's

belonging to F. If min{Xl,...,X p } and min{Yl,...,Y q } have identi-

cal distributions, then p = q and there exists a permutation

{klfk 2 ,... ,k } of {1,2,..., p} such that the pdf of Y. if
p' 1

Sk. (i = 1,2,...,p). Anderson and Ghurye (1977) proved a similar

theorem for the maximum. As an application of the above theorem,

consider the following examples.

Example 2. F is the family of normal distribution

.,. (~~xlv,a) _ 1 exp[_i(x_-__ 2

1, if U1  1 2

lim = 0, if 02 < 01 or a1 = 02 and p2 > I (7)

(, if 02 a 1 or a1 = 02 and p2 < l'

-" . a .. a..ja i
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Conditions of the above theorem are met. Hence the distributions

are identifiable.

Example 3. F is the family of negative exponential distributions

fA (x) =Ae - x , x > 0, X > 0

Here

fC x) 1, A1 = A2

lim 2 (8)
x- 0 f A (x) 2

1
1

Here conditions of the above theorem are not met and hence the

distributions are not identifiable.

Note, however, if the maximum is observed both normal and

exponential distributions are identifiable.

There may, however, be situations when the conditions of

the above theorem will not be met yet the underlying

family of distributions may be identifiable. For example, Basu

and Ghosh (1980) have shown that the gamma and the Weibull distri-

bution, which contain the exponential distribution as special

cases, are not identifiable. In fact they prove the following

theorems.

Theorem 3. Let the pdf of Xi be given by

x/S ai-i
1 1

Sf. (x) E f(x ,i) ,t e x A

i 1 (i = 1,2,3,4)

where a 1 and a2 are not both equal to one and ax3 and a4 are not

both equal to one. Let X1 and X2 be independent random variables.

Similarly, let X3 and X4 be independent. If the distribution of

3 4
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min(X 1 X 2 ) is identical with that of min(X3 X 4), then either

(al(I2 (1 3P a 4) and 01a2 = 0 Va4)

or,

(alI C 2) (CL4 ca3 ) and (61 ,a2) = 0f40033).

Now consider the case of the Weibull distributions.

-1

1e e ,x > 0, (aip > 0).

-x Pi/0. p. p.-1

Here W.(x 1 -F. Wx = e ,f (X)/F Wx x ,and as

x 0,

f. (x)

*Theorem 4. Let X. W(pi,Oi), (i =1,2,3,4) be independent Weibull

random variables. If the distribution of min(X1 1 X) is the same

as that of min(X 3 X 4) then either

(p1 1  (P3,63), (P'2 (P= 6)

or,

(Pl,61 ) =(P 4,)4) and (P2 '
0
2 ) (P3 '03)

proviZded p, 30 P2.
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In Theorem 4 we exclude the case p1 = P2. For if

Pl= P2= p, say, the problem, after using the transformation

Yi = xT (i = 1,2), reduces to that of the exponential distri-

bution.

Note that the above suggests that Theorem 2, in its present

form, provides a sufficient condition for identifiability. How-

ever, it is not a necessary one.

Ib

a

L . - ' -: : - | t -



4. DEPENDENT RANDOM VARIABLES

We next consider the case when the random variables (XIX 2,

.. ,X p) are dependent. We restrict our discussion primarily to

the case when p = 2. There are many physical situations where it

is desirable to test the assumption so frequently made that the

Xi 's are independent. It is therefore natural to study the extent

to which (U,I) or U determines the joint distribution of X's can

be identified. To this end Basu and Ghosh (1978) pointed out the

difficulties using the following construction. Let F(xlx 2) be

the joint distribution of (XIX2), F(xlx 2 ) = P(X1 >XI, X2>x2), and

Fi(xlX2) = DF(xlx 2)/Dx i , (i = 1,2). For simrplicity assume that

the density f(x1 , x2) > 0 for all (xlx 2). Let

x
Gi (x) = exp -f -F. (Z,Z) (F(ZZ)) -l (10)1- o 1 dZ

Co

and assume f -,F.(ZZ)(F(Z,Z))- dZ diverges for i = 1,2. Then
-001

Gi (x) Wl-Gi(x) is a distribution finction and (U,I) has the same

distribution whether (X1 ,X2 ) is distributed according to F(xlx 2)

or G(x 1 1x 2) = G1 (xI)-G 2 (x2). Thus our porbleir could have a satis-

factory solution only if F is known to be a well specified para-

metric family of distributions. Similar results for nonidentifi-

ability, in the absence of specific parametric models, has also

been considered by Miller (1977), Tsiatis (1975), and Rose (1973).

Tsiatis (1978) further illustrated the magnitude of this problem

with some actual data.

I

4

L .- - -I . . .. , -
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No general result on identifiability for dependent random

variables is currently available. However Peterson, Jr. (1975)

obtained the following interesting inequalities when p = 2. Let

Q1 (x I P(X 1 > X 1 and XI< 2)

Q2 (x 2  P(X 2 > X 2 and X2< 1)

01(0) = P(X 1 < X 2  =pit 11

Q2 (0)= P(X 2 < X 1 P P*

Then

1~i" 2) Q1 (x 1) + Q 2 (x 2) - P(x 1 <X1 <X2 <2X' if x1I< 2

= Q1 (x 1 ) + Q2 (x 2) - P(x 2 < X 2 < X 1 < x 1) if x 1 > x 2, (12)

Q1 [max(x1.x 2))] Q2 [max(xiX 2 )] < Y;XjX)! x1 + Q 2 (x 2

and

Q1 (x 1) + Q2 (X 1  S F1 (x 1  S Q 1 (x 1 ) + p 2  (13)

Q1 (x 2 ) + Q2 (x 2  !5 ~2 (x 2  -5 p1 + Q 2 (x 2 )

Bivariate normal distribution

In case of specific parametric models questions on identifi-

* ability has been settled on a number of distributions. We summarize

some of these result6%- Consider first the case of bivariate normal

distribution. Let (X11X 2)- BV (11 1 12#01F02FP1 Nardas (1971)

shoured that if 0 -p 2 < 1 the distribution of the identified

minimum of a normal pair determines the distribution of the pair.

Nddas' proof is not complete, however. Basu and Ghosh (1978) comn-

pleted Nddas' proof and extended it to the case of nonidentified

ja.PIL- A 0
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minimum. Recently Gilliland and Hannan (1980) gave an elegant

solution of the problem for the general case. Their results are

given below.

Let (XIX 2 )%BVN(I, p2 ,oI,0 2 ,P). Assume, without any loss of

generality, that 01 > 02 or o1 = 02 and p 1 K 2" Identification

of parameters Pl, 2F 01 0o2 1 and p within this restricted family is

equivalent to identification of parameters up to the switch of

(Wi,1 ) and (p2 1a2) in the unrestricted family. Consider the

following subfamilies of bivariate normal distributions defined

by the following additional restrictions on the parameters.

N 0: 2  > 0, IPl 1

N: 00 201 2 1NI o I > o 2 = 0

N2: 2 > 0, P = -i (14)

N3: 01 > 02 > 0, p = 1

N 4: 1 = 012 0, p = 1 or undefined.

4
Let N = u N. Let FU denote the distribution of0 U

U = min(XlX 2 ) when (XIX 2) has distribution F.

Theorem 5. If F,G c N and FU = Gut then F = G.
0 U

Theorem 6. Suppose that F,G c N and FU = G Then F,G . N. for

some i = 0,...,4. If F,G E N., i = 0,...,3 then F = G. If

F,G E N4 ' then F and G have the same values Wl,ol, and o2 values

but arbitrary p 2 1l values.

!

Y :... ....... .......... ...... , 0 .. ,, , ,. *:- -
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No result for the general case is available as yet.

However Basu and Ghosh (1978) showed the identifiability of the

trivariate normal distribution given the distribution of the

identified minimum and, given that for each pair of random variable

Xi,X. with correlation cofficient p.. and deviations ai and aj,

1 - Pij ai/a > 0 (i,j 1,2,3; i # j).

Note most of the identification problems considered so far

are also valid when the maximum V, instead of the minimum U, is

observable. For if X pis variate normal, so is -X and

max(X ,...X ) = -in(-Xl,...,-Xp

and thus identification problem for the maximum can be restated

in terms of the identification problem for the minimum. Also,

any bivariate distribution obtained through strict monotone trans-

formation of normal variables will be identifiable. The bivariate

.* lognormal distribution is thus identifiable.

Next we consider identifiability of a number of

bivariate distributions useful in reliability theory and survival

analysis. We, in particular, consider several bivariate exponen-

tial distributions. A survey of some of these distributions is

presented in Basu and Block (1975). These include the bivariate

exponential distributions of Marshall and Olkin (1967), Block and

Basu (1974), and Gumbel (1960). Basu and Ghosh (1978, 1980) have

considered identifiability of these distributions. There results

are summarized below.

-6:1
I a, I I i ' I '' I -' " '', ' , r
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(a) Marshall and Olkin bivariate exponential. The

tail probability of the Marshall-Olkin bivariate distribution is

given by

F(Xil'X2)= exp[-AX1 - A2x2 - X12 max(xlx 2 )
]

(15)
xlX 2 ,AI 1 2 > 0, A12 > 0 .

= 0, otherwise.

Here all parameters are identifiable if (U,I) is observed. However,

if only U is observed the parameters are not identifiable.

(b) Block-Basu model. Here the joint density function is

given by

f(x 1 x 2) AX A 1 (X2 + A 1 2 )/(A1 + X 2 exp - 1 x 1 - (A 2 + X 1 2 )X2

x1 < x 2  (16)

- A A 2 (A 1 + A1 2)/(A 1 + XA2) exp -(XA1 + A 1 2)x 1 - A 2 x2 1 ,

x 2 > x 1
where X = A + X2 + 12' Here the parameters are not identifiable

at all. Note that the model proposed by Freund (1961) is also not

identifiable, since it is related to the Block-Basu model.

Because of the underlying physical assumptions neither

*Marshall-Olkin nor Block-Basu is considered a suitable one as a

physical model when the maximum is observed.

(c) Gumbel model I. Gumbel (1960) proposed two bivariate

exponential distributions. The first one is given by

!
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F(xlx 2 ) 1 - exp(-AlXI ) - exp(-A2 x2 ) + exp(- 1 x -A 2 x 2 - A12 X 2

xlx 2,X 1 1 2 > 0 , A12 - 0(

Here, the parameters are identifiable if (U,I) is observed. However,

if the nonidentified minimum U is observed only X12 and X1 + X
12 1 2

are identifiable. If the nonidentified maximum V = max(xl1 x2 ) is

observable, then A 12 is identifiable and (A1 ,A1 2 ) is identifiable

up to a permutation.

(d) Gumbel model II. Here the distribution function is

given by

F(x,,x 2 ) = (1 - exp -X X)(I - exp - A2 x2 )(i + X 2exp(-Xl 1 2x 2 )) (18)

Here if U is observable, X1 2 is identifiable and ( 1 1 A,2 ) is

identifiable up to a permutation.

(e) Bivariate Weibull distribution. Like the bivariate

exponential distribution, the bivariate Weibull distribution can

be defined in a number of ways. Consider the following bivariate

Weibull survival function

F(xX) =P(X > x I X > x)
12 P( 1  1,2 2

1 P2 P1  p2  (19)
= exp d IlX1 + X2x2 + A1 2 max(x1 ,x2

Here again if U is observable, p1 and P 2 are identifiable up
to permutation. Also X 1 and X 2 + X12 or X2 and X1 + X12 are

identifiable.
1

~ ~* >*7%
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5. ESTIMATION OF PARAMETERS

Estimation of parameters.based on (U,I), the identified mini-

mum has been considered extep~sively. Basu and Ghosh (1978) have

considered the problem of estimation of parameters based on U alone

for the bivariate normal distribution. Similar results can be

obtained using V.

We consider some other models. The pdf of V, assuming inde-

pendence, is given by

fv(t) = fl(t)F 2 (t) + f2 (t)F1 (t). (20)

The para< ters can therefore be estimated numerically using method

of maimrum Likelihood.

As an illustration, let the density function of Xi be given

by

fi(xi) = A. exp(-Xixi) ' x ii > 0, i = 1,2).

Then the density function of V is given by

fV ( t ) = Xi exp(-X 1 t) + X2 exp(-A 2t) - (X1 + X2 ) exp -(Xi + X2 )t.

Hence one can find the maximum likelihood estimates. A simpler

method of estimation is by the method of moments. We can readily

show

E(V) = + 1 - (21)
1 2 X1 + 2

and

2 ) = 2 + 2 _ 2
E (V )7 -- T (22)

1 2 (A1 + X2)

i-ft-L ++' : + . ..- + + n " ' ++ ' I '



18

Replacing E(V) and E(V ) by their simple estimates Vi/n and
2

Vi /n one can solfe for I and 2 by iteration.

Similarly, suppose Xl,X 2 are dependent and follow the follow-

ing distribution of Gumbel.

-i1 -2x2 11-2x2-1122
F(xlx 2 ) = 1 - e - e + e

Here the density function of the maximum V is given by

-Xlt -X2t-(l+2t-l2

fv(t) = X1 e 1+ 2e -2 (X1 + X2 + 2X1 2t)e (23)

Using this one can again estimate the parameters by the method of

moments.

4
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6. CONCLUDING REMARKS

In this section we point out a number of areas in which

additional work is being carried out and we also point out a few

open problems.

So far we have assumed, in the competing risks problem, that

the observed random variable U is the minimum of p (unobserved)

random variables X1, X2,... ,X . In analyzing mortality data the

above is interpreted as follows. Consider a population in which

K causes of death, C1 , C2 ... ,C p, are operating. Each individual

in this population is exposed to risk of dying of any one of these

causes. One can recognize two kinds of distributions associated

with death due to cause C.:1

(a) the survival distribution F ia(t) due to cause Ci,

conditionally that Ci is the cause of death, in the presence of

other causes;

(b) the survival distribution F.(t) due to Ci, if Ci is act-

ing alone.

It is tacitly assumed that corresponding forces of mortality

(failure rates) are the same. Gail (1975), Elandt-Johnson (1976),

' and others have explored the implication of this assumption.

A second assumption is that the potential survival times Xi 's

are independently distributed with continuous distribution function

Fi (i = 1,2,...,p). Some results to this end are given in sections

2, 3, and 4. For another interesting direction of research see

* Miller (1977), Desu and Narula (1977), Langberg, Proschan, and Quinzi

(1977) (1978), and the references therein. Desu and Narula consider

the problem of estimating the distribution function Fi(t) = P(Xi : t)

E ll XW.2L
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and provides sufficient condition on the distribution of

(Xl,...,X p) under which such an estimation is possible.

A third direction of research has been the interpretation

of competing risks problems in terms of some stochastic process.

Chiang (1968) has studied the problem of competing risks using

time-nonhomogeneous Markov processes. Clifford (1977) and Berlin,

Brodsky, and Clifford (1977) have considered the problem of iden-

tifiability for this situation.

The problems described in the previous chapters can be ex-

tended in several directions. The author is currently working on

some of the problems stated below.

(a) As mentioned before, Theorem 2 of Section 3 does not

provide a necessary and sufficient condition. It would be desir-

able to improve on this result.

(b) Most of the identifications results obtained so fare are

for the case of two competing causes. These need to be generalized

for the case of any number of variables. Some results to this end have

been obtained by Basu and Ghosh (1980b). Necessary algorithms for esti-

mating the parameters should also be obtained.

(c) The concept of competing risks is well known. Basu and

Ghosh (1980) first coined the term complementary risks for the

dual problem. In reliability theory the corresponding problems are

for series and parallel systems It is natural to pose the follow-

ing general problem corresponding to a k-out-of p system (k p).

Recall a system is called k-out-of-p if the system operates so long as
be he thored

k or more components function. Let X(r) be the r ordered

statistic among X1 , X2,..., X • Suppose only X(r ) is observable,

where r = p - k + 1.
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Given the distribution function of X(r) could we uniquely determine

the marginal distribution function Fi of Xi (i = 1, 2,...,p)? Note,

if r = 1, we obtain the case of competing risks. And if r = p, we

obtain the case of complimentary risks. Below we get some partial

solution for the case of three independent exponentially distributed

random variables.

Let X1 , X2 , X3 be three independent random variables and let

Xi  e( i ) (i = 1, 2, 3). Suppose distribution of X(2 ) is known

and it is known which of the three variables Xl, X2, and X3 is X(2) .

That is we assume X to be identified. If the X. 's have a common(2) 2.

distribution F with density function f we can again solve the

problem readily. For

- t-(X >t)= 1 F(t) + F(t)) (24)
F (2) (2) > t 2( 2 3

In general, if Xi has distribution function Fi and density function

f. we have1

f(2) (t) (F 2 (t)F 3 (t) + (F1 (t)f2 (t)F3 (t) (25)

For the exponential case we have the following theorem.

Theorem 7. Let X1 , X2, X3 be independent random variables with

Xi  e( i ) (i = 1, 2, 3). Similarly let Xl, X2 , X3 be independent

random variables with Xi  e(A') (i = 1, 2, 3). If the distribu-

tion of the identified rth ordered statistics U(r) (among X1 , X2, X3 )

and Ur) (among Xl, X2, X3) are identical then either!2
(AI, A2, A 3) = (X2, '2 , 1) or (X1, 1 A 3 ) (A1  A2, 1i).

Since the result is well known for r = 1 and r = 3 consider

the case when r = 2.

*_ i ~~
7 jb* * - "." - "
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Proof. Since the order statistics is "identified" let us assume

U = X and U = X2 . Now the densities of U and U are
(2) 2 (2) 2 (2) (2)

identically equal. Hence

2 e + e 3t - 2e 3] (26)

P2e 2 t [e I + e - 2e] for all t.

or,

fH X- 3 -)t -X 3 t
2  _(A +,1 +k2) l- G1i+2) }t 1 + e - 2e

-e
V2  -(W3-P1 ) t  - 3t

l+ e - 2e

for all t. (27)

For simplicity assume < X3) and ii 3" Then as t , the

ri ht hand side of (27) tends to 1. Hence the left hand side limit

of (27) is also 1. This implies 11 = X1 and 2 = 2 2" Substituting

these values back in (26) we note o 3 = x3.

More results in this direction have been obtained by Basu

and Ghosh (1980b).

5-
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